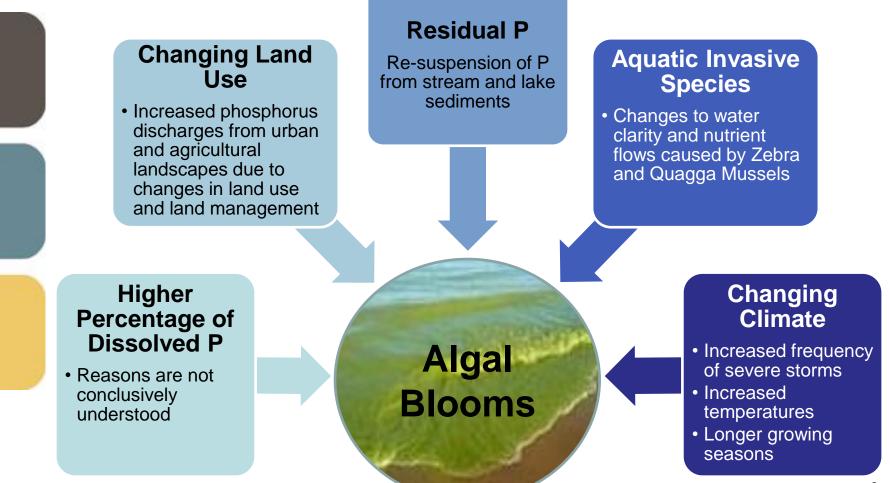
### **Great Lake Update** Lake Erie Nutrients: Towards a Lake Erie Domestic Action Plan

Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) Environmental Management Branch



### Great Lakes Algal Blooms

- Following extensive phosphorus reduction efforts initiated in the 1970s, harmful algal blooms (HABs) in Lake Erie were largely absent
- However, blooms began to reappear in the western basin of Lake Erie in the mid-1990s
- 2011 Records setting algal bloom in Lake Erie
  - Significant impacts to fishery, recreational uses, beach access, property values
- 2014 Harmful algal bloom impacted drinking water supply
  - Interrupted water supply for 500,000 people in Toledo, Ohio
  - Drinking water advisory for Pelee Island
- 2015 Largest bloom in Lake Erie's History (National Oceanic & Atmospheric Administration)



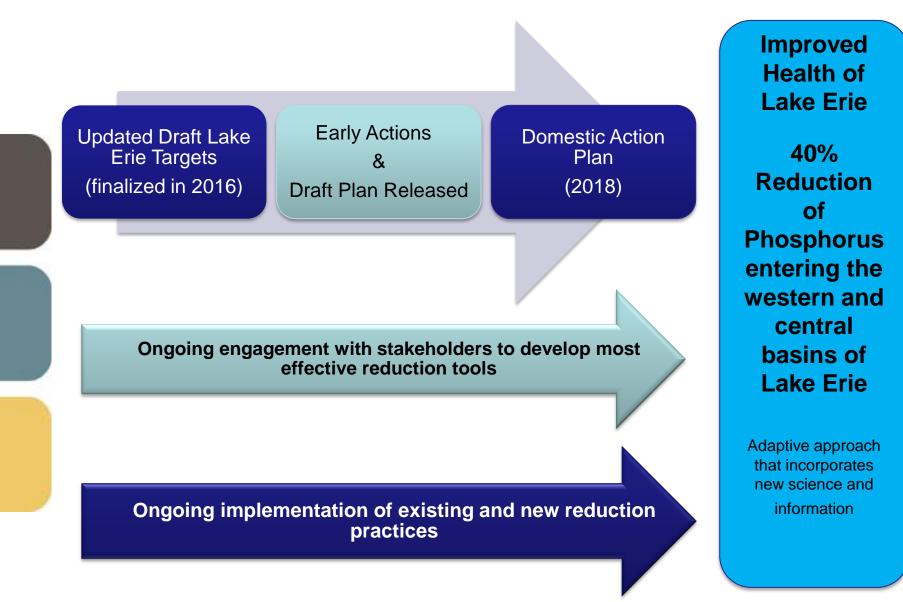





### The Algae Issue – Complex Causes

Phosphorus (P) is the main contributor to lake algal blooms. Many factors will contribute to blooms despite any reductions in agriculture sourced phosphorus.

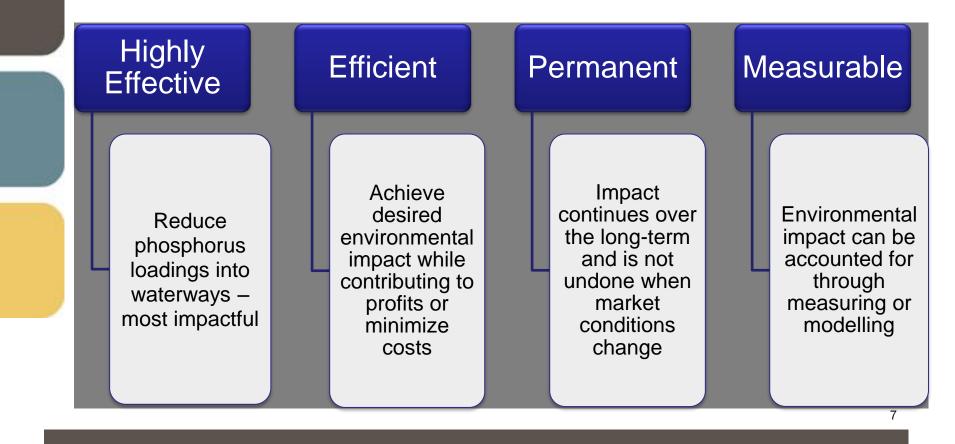



#### Ontario's Great Lakes Commitments



### **Recent Great Lakes Activity**

- Great Lakes Water Quality Agreement process has determined that a 40% reduction of Phosphorus entering the western and central basins of Lake Erie is needed to improve the health of Lake
  - A proposed reduction of 3,316 Metric Tonnes Annually (MTA) from the United States and 212MTA from Canada
  - Thames River and Learnington tributaries are Canadian priorities to reduce localized algal bloom issues
- The Premier of Ontario and Governors of Michigan and Ohio signed a Collaborative Agreement on June 13, 2015
  - 40% reduction of Phosphorus to western basin of Lake Erie by 2025, with an interim reduction target of 20% by 2020
- The Great Lakes Commission recently released a Joint Action Plan for Lake Erie that outlines 9 key actions that can contribute to achieving the 40% reduction target (see Appendix A for actions geared to agriculture)


### **Process Towards Achieving Reductions**

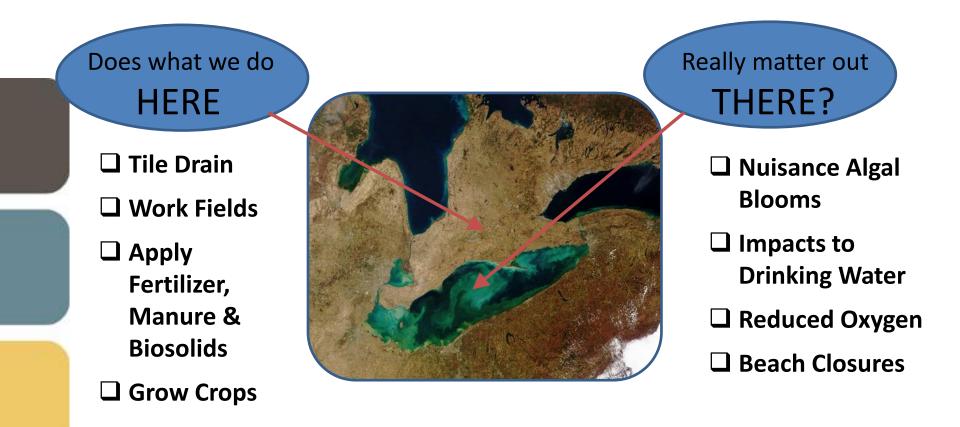


### Development of the Domestic Action Plan

#### **Engagement and collaboration:**

- The actions to achieve these goals will be developed in collaboration with stakeholders
  - Critical to have engagement at all levels; farm organizations to individual producers




### Key Messages

- Solutions will come from all sectors, however agriculture has a significant role to play
  - Despite the ongoing commitment and actions taken by farmers, conditions in Lake Erie are becoming more severe; achieving the reduction target will require significant change from the status quo
  - Solutions will require engagement and action across the entire agriculture sector
- To have a meaningful impact, engagement and action will need to occur at all levels from leadership to producers
- We know the issue is complex and there are no instant solutions but we challenge each agricultural producer in Ontario – and particularly those farming in the Lake Erie watershed – to think about what actions they can take to reduce phosphorus escaping from their farms
- Everything is on the table at this stage to impact change; including regulatory options, cross compliance, incentives, education and research

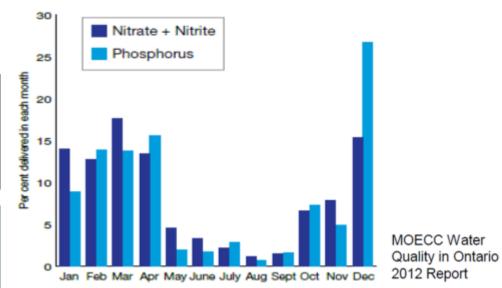
### **Moving Forward**

- Collective efforts to engage industry leaders, experts and producers in developing options and taking early action
- Ontario and Canada are planning to engage the agriculture and other sectors on potential actions to achieve reductions to support the development of the Domestic Action Plan
  - Looking for advice to government and actions that industry organizations will take
- Longer term efforts are underway through the GLWQA Nutrients Annex (Annex 4) process including:
  - 2016: Release of final Lake Erie nutrient targets
  - 2016/17: Early actions/drafting Domestic Action Plan
  - 2018: Release of Domestic Action Plans

### What Does it Mean for Agriculture?



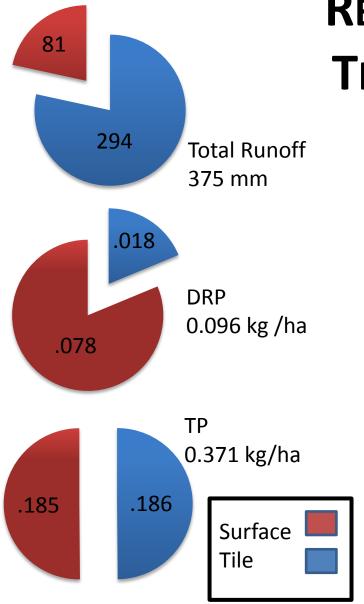
### **Dissolved Reactive Phosphorus**


- Phosphorus enters the Lakes in two basic forms, with different bioavailability (to support algae):
  - Most dissolved P is dissolved reactive P (DRP), which is 100% bioavailable
  - Particulate P is mostly unavailable to algae, and the portion that is bioavailable may settle to the lake bottom before being released to support algal growth



- Changes in agriculture have been identified as contributing to upward trends in DRP export. These include (<u>Heidelberg University</u>):
  - Increased broadcasting of fertilizer without incorporation
  - Build-up of P concentration at soil surface due to broadcast fertilizer applications, crop residue breakdown on the soil surface, and decline of mold board plowing
  - Unnecessary fertilizer or manure application when P is already available in soil
  - Soil compaction that increases surface runoff
  - Increased tile drainage coupled with the development of macropores

### Non Growing Season P Loss


## Majority of nutrient export in non-growing season:



- Highest risk period for Phosphorus loss from agriculture is in the nongrowing season (Nov – April)
- Intense rainfall events during this period are increasing with climate change
- Over 80% of Phosphorus loss can occur in this period







## RELATIVE CONTRIBUTION OF TILE AND SURFACE RUNOFF TO ANNUAL P LOAD

(MAITLAND SITE: MAY 2012 – APR 2013)

#### **General Conclusions**

Surface – not dominant pathway for water movement (~22%) but accounts for:

81% DRP loss

50% total P loss

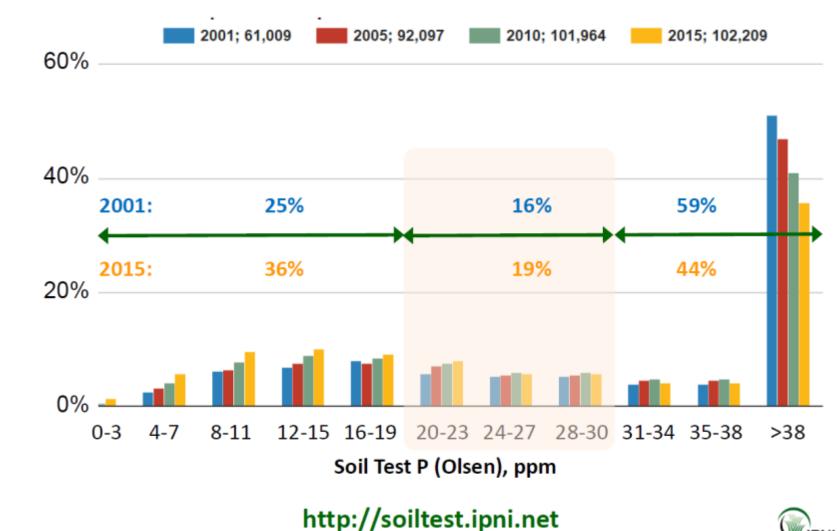
Source: C. Van Esbroeck – Thesis

### Ag Production – Changes in Lake Erie Watersheds

Changes in production trends have had impacts on Phosphorus, including:

- Expansion of Greenhouse production
- Hay/Forage to corn and soybeans
- Increasing size of farms/fields
- Ownership to renting

• Increased distiller grains in livestock rations








### Phosphorus in Ontario's Soils

#### Ontario has more soils very high in P than Ohio



### Phosphorus Rate and Timing

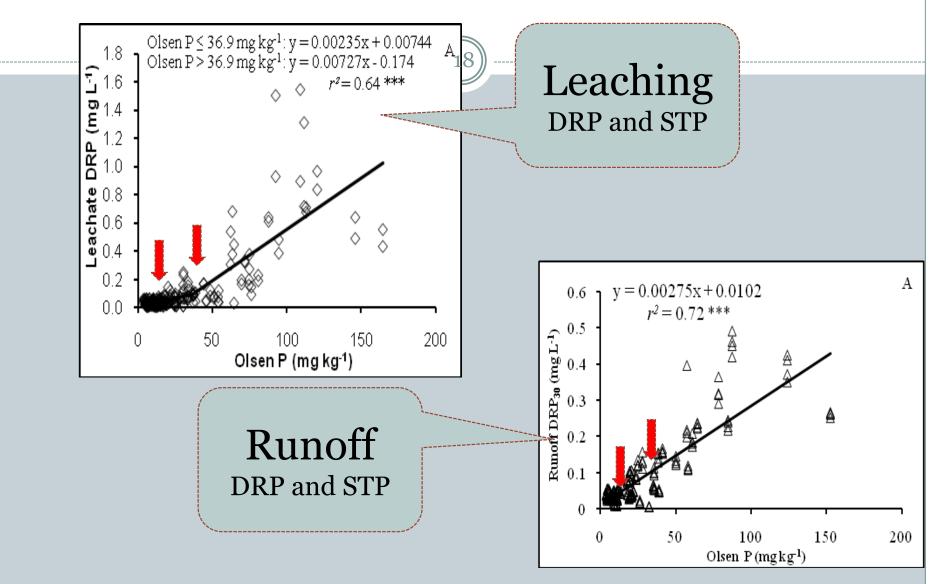
Reduce tillage and Use Ontario Recommendations

| NMAN         | Agronomic     | Crop Removal    | Ontario | USLE              |
|--------------|---------------|-----------------|---------|-------------------|
| 6 years      | 6 years P205  |                 | P-Index | (ton/ac/yr)       |
| cC-cS-cW     | 18-0-0-18-0-0 | 83-0-83-83-0-83 |         |                   |
| P band       | 36            | 332             | 16      | 6                 |
| C-nS-nW      | 18-0-0-18-0-0 | 166-0-0-166-0-0 | Less P  | Less soil<br>loss |
| Pbcst/incorp | 36            | 332             | 9.3     | 2.2               |

Incorporation  $\neq$  plowing

Soil Test level 25 ppm

K. McKague, OMAFRA, NMAN


### 4Rs Strategy

- Place
- Time
- Rate
- Source

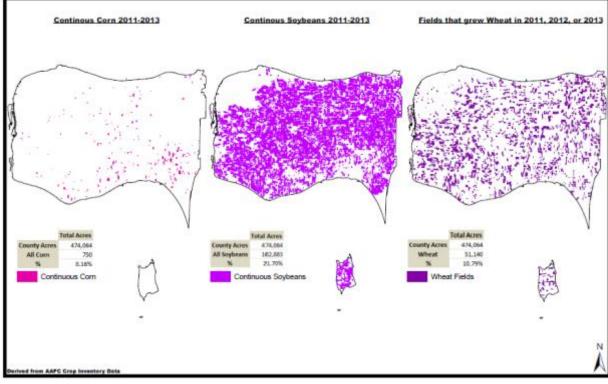


#### Sub-watershed

#### **Runoff and Leaching Studies for Phosphorus**



#### High soil test levels increase P loss


### **Crop Rotation**

More Yield Adding Wheat to Corn/Soy:

+10% Ridgetown +14% Elora

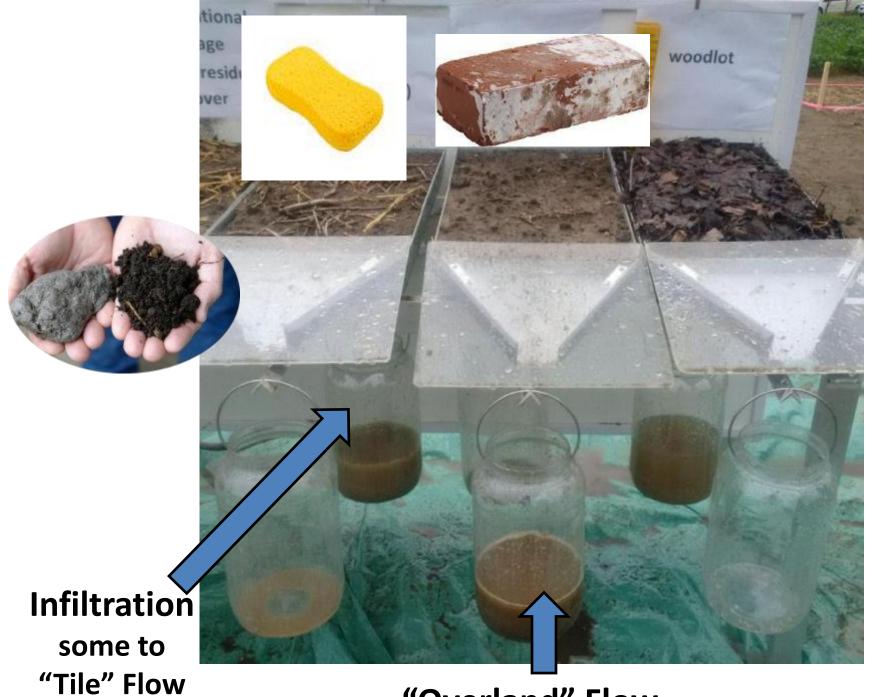
Over 34 years +22% yield

B Deen, U of Guelph, 2014





Erosion 0.33 t/ha/yr SCI = 0.1


Erosion 0.19 t/ha/yr SCI = 0.3

### **P-Containing Materials and Winter Application**

- First choice: Don't do it!
- When soil is frozen there is no opportunity for infiltration
- Winter rain events result in high surface runoff
- Nutrients on the soil surface will move with surface water
- Soil with low aggregate stability will move with surface water
- Snow melt often occurs with rainfall

Manure applied and incorporated Jan 15

To prevent a storage spill: materials containing phosphorus should not be applied unless they can be incorporated same day



"Overland" Flow

### **BMP Implementation**

### ACT (Avoid – Control – Trap)


- 1. Apply nutrients using 4Rs principles
- 2. Keep nutrients in place once applied (soil health)
- 3. Trap nutrients before edge of field

### **Top 2 Focus Areas for BMPs**

To reduce P loading to Lake Erie from Ontario agriculture non point sources:

- 1. Place P in the right place and the right time
- 2. Reduce surface runoff (reduce soil erosion and cover the soil)







### Summary of BMP Effectiveness

|                      | ВМР                                |  | Growing<br>Season | Non-Growing<br>Season | High Flow<br>Events |
|----------------------|------------------------------------|--|-------------------|-----------------------|---------------------|
|                      | Right Place                        |  | Н                 | Н                     | Н                   |
|                      | No Winter Spreading                |  | N/A               | Н                     | Н                   |
| S                    | Right Time                         |  | Н                 | Н                     | Н                   |
| rient                | Right Rate                         |  | Н                 | М                     | Н                   |
| Managing Nutrients   | Soil Testing and P recommendations |  | Н                 | М                     | М                   |
| anagir               | Test organic<br>amendments         |  | Н                 | М                     | Μ                   |
| Σ                    | Right Source                       |  | М                 | М                     | М                   |
|                      | P in Feed Rations                  |  | Н                 | Н                     | Н                   |
|                      | Nutrient Mgmt Planning             |  | Н                 | М                     | М                   |
| r<br>on              | Crop Rotation                      |  | М                 | М                     | М                   |
| Water<br>nfiltration | Cover Crops                        |  | L                 | M to H                | M to H              |
| Lnfi                 | Conservation Tillage               |  | М                 | М                     | М                   |

### Key Science-based Conclusions

- ACT (Avoid first, Control, Trap)
- Need to be able to address soil and P loss in major rain events
- Need to focus on P losses in non-growing season
- Improved soil health is an important part of the solution
  - Reduced erosion and increased water retention in soil
- Drainage needs to be considered as part of the solution
- Multiple BMPs are more effective, but solutions need to be tailored on a farm by farm basis
- Phosphorus loss potential varies significantly across the landscape and within fields
- Actions need to be targeted for the greatest impact with limited resources

# Appendix A: Great Lakes Commission – Joint Action Plan

### Great Lakes Commission - Joint Action Plan

- The Great Lakes Commission's Joint Action Plan for Lake Erie outlines 9 key actions to address urban and rural sources of phosphorus.
  - Reduce nutrient applications on frozen or snow covered ground
  - Adopt "4Rs Nutrient Stewardship Certification program" or other comprehensive nutrient management programs
  - Reduce total phosphorus from seven key municipal dischargers
  - Encourage and accelerate investments for green infrastructure for urban storm water and agricultural runoff, including ecological buffers for rivers, streams and wetlands
  - Reduce the open-water disposal of dredged material
  - Pilot innovative performance-based and/or market-based nutrient reduction projects
  - Phase out residential phosphorus fertilizer
  - Targeted Conservation at the Watershed Scale
  - Within five years, validate or refine the reduction targets and timelines using an adaptive management approach