Reducing Phosphorus Loss from Ontario Farmland

Presentation to:

Agriculture Sector Working Group May 27, 2016

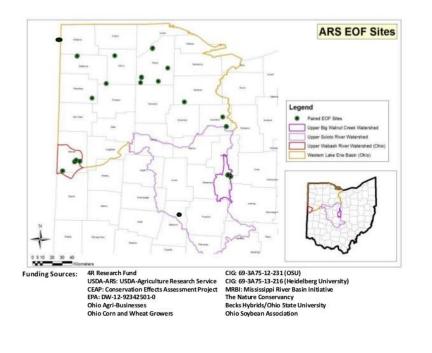
Rural Point vs. Non-point P Loss

Non-point Sources:

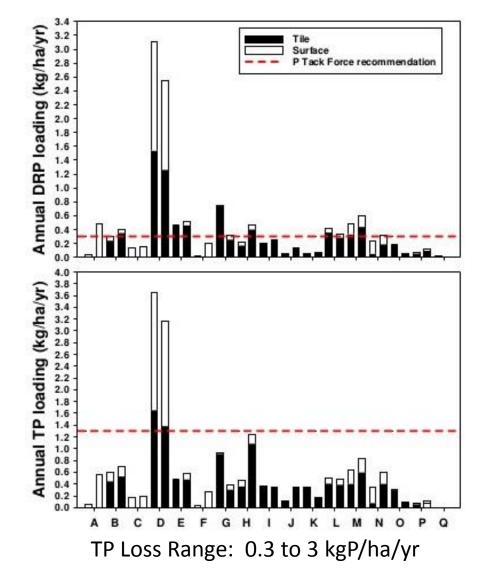
(broadscale, indirect)

- Edge of field losses
 - Particulate P
 - Dissolved P

Point Sources:


(local, direct, quantifiable, significant?)

- Washwater discharge (e.g. milking centre) (e.g. 60 cows ~ 800-1000 L/day ~ 15 kg P/yr)
- Manure storage/yard runoff
- Livestock access


Non-Point Source: How Much P is Coming off the Land?

Ohio Observations

(Source: Kevin King – USDA-ARS , Columbus, OH)

~ 20 Paired Edge of Field Sites - Ohio

How Much P is Coming off the Land? Total P in soil (0-6") Ontario Observations

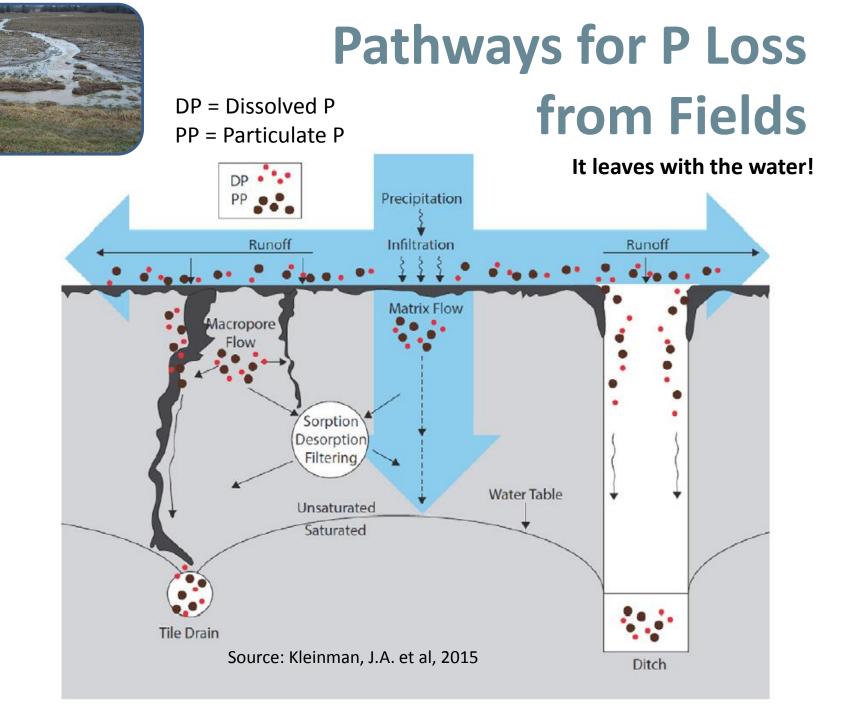
~1670 kg P/ha

Soil Test P (0-6") 11 mg/kg (~22 kg avail P/ha)

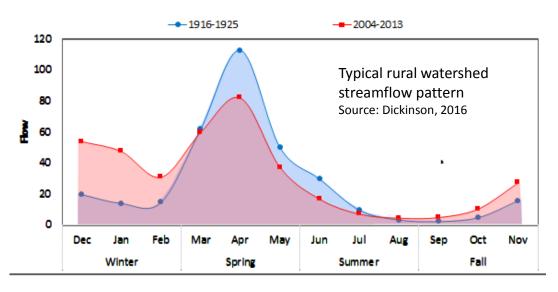
P Applied (Avg. over 3 years) ~30 kg P/ha/yr

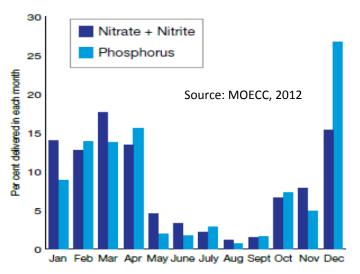
P in Harvested Crop (Avg. over 3 years) 25 kg P/ha/yr

3 years (CBW rotation)


(Perth Clay Loam, 0.2%-3.5%)

Avg Precip:954 mmAvg Runoff:331 mmoverland:tile20:80


Avg. annual P loss to water: TP 0.3-0.5 kg/ha overland:tile ~ 50:50


Legend

- Surface watershed boundary
- Tile watershed boundary
 - Field edge monitoring point
- △ On-site climate station

When Does P Leave the Field?

P leaves with the: Harvested Crop, Water

Image: Constraint of the second se	s = Particulate Phosphorus + Dissolved Phosphorus	Field Conditions Influencing P Loss (source: P Index Keith Reid – AAFC, Guelph)		
Condition	Source	X	Transport	
1 (Inherent)	Particulate P (P _p) attached to eroded soil	Х	Amount of delivered sediment	
2 (Inherent)	Dissolved P (P _{Diss}) carried in overland runoff	Х	Amount of overland runoff	
3 (Inherent)	$P_p + P_{Diss}$ carried in tile water	Х	Amount of tile water	
4 (Applied)	P in Fertilizer vulnerable to direct water contact	Х	P _{Diss} in overland and tile flow	
5 (Applied)	P in Manure vulnerable to direct water contact		P _{Diss} in overland and tile flow	

Note: Field Conditions Change by Season (growing season vs. non-growing season)

Managing Inherent P Loss

1) Control Soil Erosion

Source: Keep soil P tests low – because higher soil P soils have higher concentrations of P in eroded sediment (i.e. manage rates)

Transport: Reduce erosion and sediment delivery to watercourse

Erosion Control Principles:

- Maintain good soil cover (preferably living) year around
- Reduce soil movement due to tillage action
- Protect vulnerable areas (e.g. drainage pathways)

Soil Health Principles (parallel principles):

- Maintain "armour" on the soil (no bare ground)
- Keep mechanical disturbance to a minimum
- Diversify crops, vegetative cover
- Keep a living root in ground as long as possible

In-Field (Sheet and Rill) Erosion Control

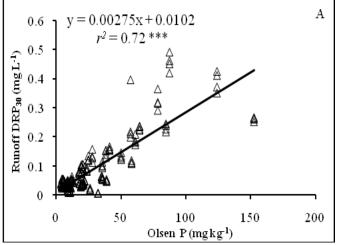
Relative Erosion Control Benefits of different Field Management Practices

County	Soil Type	Slope		Crop and Tillage	RUSLE2 Erosion	Soil Conditioning
		Grade (%)	Length (ft)	Ŭ	Rate (t/ac/yr)	Index (soil health indicator)
Huron	Huron CL	6	150	soybeans fall tillage	8.7	-0.8
Haldiman	d Hldmd SiC	0.5	100	soybeans fall tillage	0.52	-0.09
Huron	Huron CL	6	150	soybean w. wheat	5.3	-0.2
Haldiman	d Hldmd SiC	0.5	100	rotation	0.31	+0.3
Huron	Huron CL	6	150	NT soys into rye cc	1.4	+0.4
Haldiman	d Hldmd SiC	0.5	100	planted October	0.14	+0.5

Reduced tillage, crop diversity and cover crops reduce erosion, improve soil health - regardless of the setting.

Soil Erosion Control in Concentrated Flowpaths

Control Channel (gully) and Ditchbank erosion as well as field erosion


A system of practices (field and flowpath erosion control) is needed

Managing Inherent P loss

2) Reduce the chances of dissolved P being carried by overland water to watercourses

Source: Keep soil P tests low (manage rates)

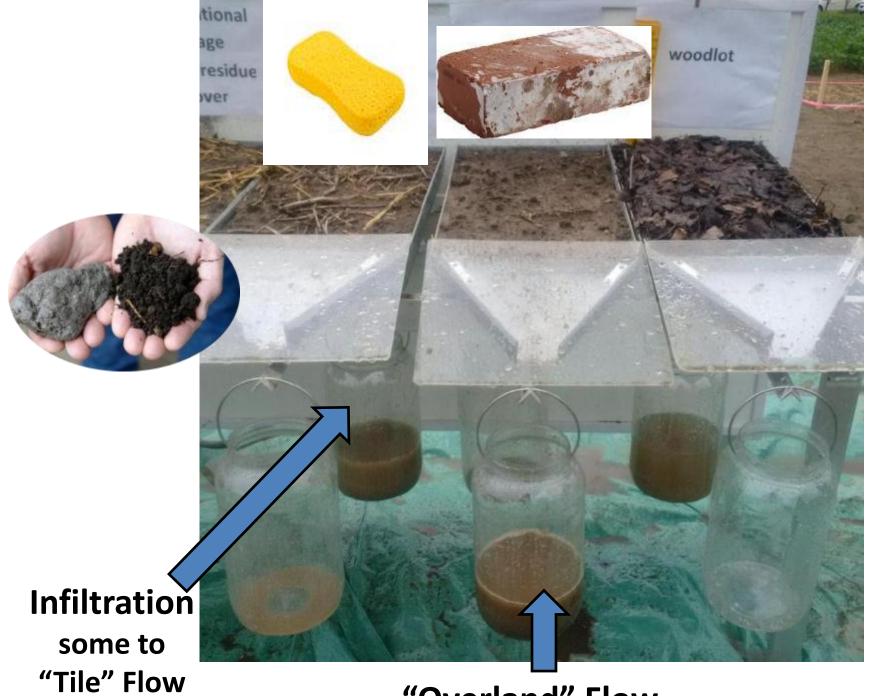
- Higher soil tests = higher <u>dissolved P</u> in runoff water

(Wang 2010 thesis)

Surface soil layers have the most contact with runoff water Avoid significant P stratification

Depth	Olsen P		
0-1"	22.25		
1-2"	17.5		
2-6"	8.75		
6-12"	5.25		
12-18"	5		
18=24"	3.5		
24-30"	3.75		
Avg (0-6")	12.5		

Transport: Improve soil infiltration capacity to reduce overland runoff

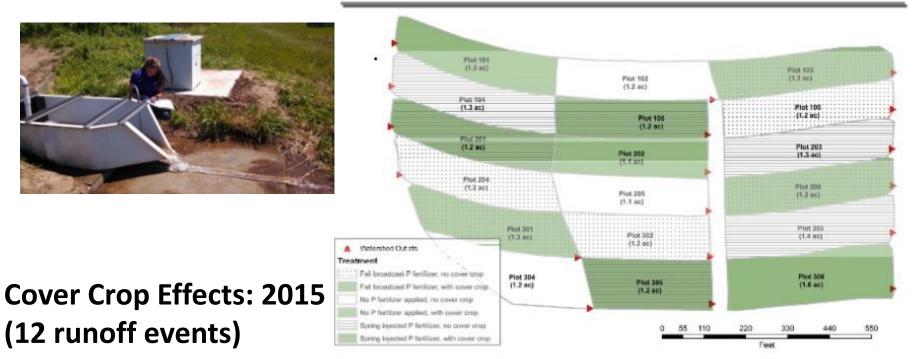

Reduce the chances of dissolved P being carried by overland 2) water to watercourses

A BRICK?

OR

Improving soil health, reducing compaction improves soil infiltration

"Overland" Flow

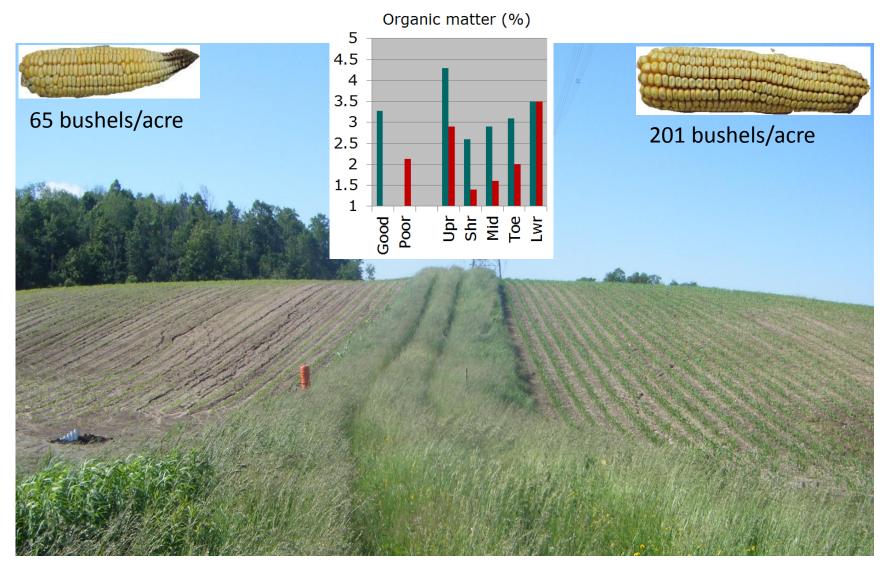


Cover Crops

Show Promise to:

- Improve soil structure (infiltration)
- Improve soil water holding capacity (OM)
- Increase ET (Less water = less runoff volume)
- Reduce erosion (particulate P loss)
- Function in the critical non-growing season

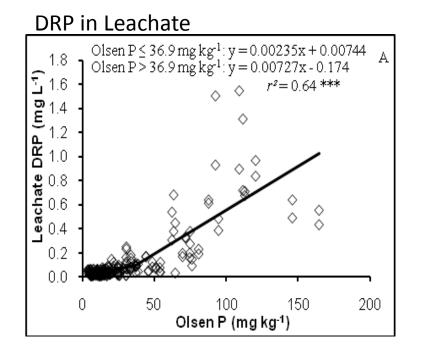
KAW Field Lab Kansas Agricultural Watersheds Field Lab


16% reduction in runoff with cover crops >50% reduction in sediment loss (6.2 -> 2.8 MT/ha)

>50% reduction in TP loss (3.3 -> 1.6 kg/ha) >50% reduction in SRP loss (0.3 -> 0.1 kg/ha)

Source: Nelson et al. (2015) SWCS Edge of Field Monitoring Conference, Memphis, TN

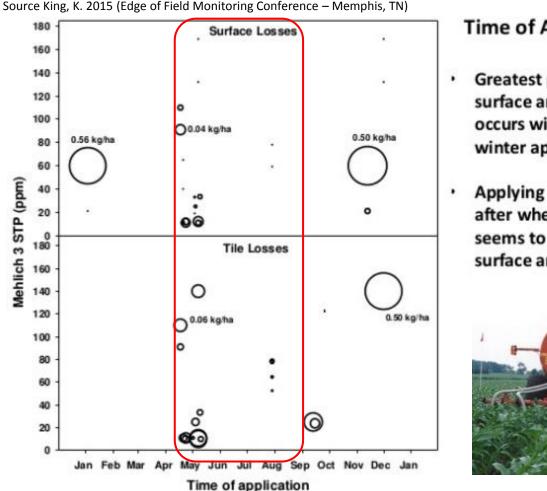
Maintained/Improved Soil Health (has yield benefits in the long-term)


Managing Inherent P Loss

3) Reduce the chances of dissolved <u>and</u> particulate P being carried by tile water to the watercourses

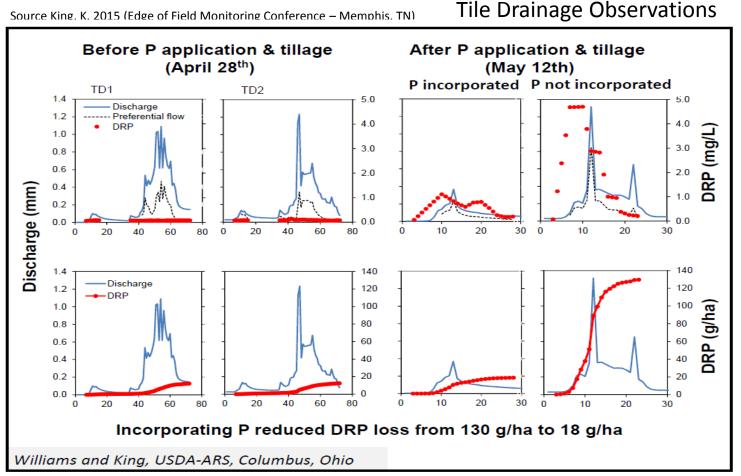
Source: Keep soil P tests low (manage rates)

- Higher soil tests = higher P concentrations in soil water


Transport: Minimize use of surface inlets (esp. in tilled fields)

It is better for drainage water to reach drainage tile by moving through the soil profile than via macropores or surface inlets. **E.g. Tile P study:** Surface runoff [P] 3x to 5x higher than tile [P]

Managing Application P Loss 1) Timing - Apply Fertilizer and Manure at times when there is the least risk of water runoff



Time of Application

- Greatest potential for surface and tile losses occurs with fall and winter application
- Applying P in spring or after wheat harvest seems to minimize surface and tile losses

Managing Application P Loss 2) Placement - Apply Fertilizer and Manure so it is not exposed to runoff and can bind to soil quickly

Need to balance off the need for incorporation with risk of soil erosion!

Summary of Application BMP Effectiveness

	BMP	Growing Season	Non-Growing Season	High Flow Events
Managing Nutrients	Right Place	Н	Н	Н
	No Winter Spreading	N/A	Н	Н
	Right Time	Н	Н	Н
	Right Rate	Н	Μ	Н
	Soil Testing and P recommendations	Н	М	М
	Test organic amendments	Н	М	М
	Right Source	М	М	М
	P in Feed Rations	Н	Н	Н
	Nutrient Mgmt Planning	Н	М	М
Water Infiltration	Crop Rotation	М	М	М
	Cover Crops	L	M to H	M to H
	Conservation Tillage	М	Μ	М

Summary

- Phosphorus is in two main forms (particulate, dissolved)
- Phosphorus in both forms leaves with the runoff water (overland + tile)
- The majority of runoff (and therefore P loss) occurs during the nongrowing season
- Soil erosion control, including field erosion (sheet and rill), channel erosion (gully) and ditchbank erosion is important
- A systems approach to erosion control is most effective
- Maintaining low soil P levels further reduces inherent P loss
- Improved soil health encourages infiltration
- Drainage water filtered by the soil matrix has a lower P concentration than overland water moving through macropores or surface inlets
- Cover crops show promise in improving soil health and indirectly, water quality – especially for the critical non-growing season
- A suite of practices, tailored to the site, will have greater success in controlling P loss under a range of weather/seasonal patterns.